
UML Visualization for an
Aspect and Goal-Oriented Approach

Elena Navarro
Department of Computer

Science, UCLM
Avda. España S/N

Albacete, Spain
+34 967 59 92 00 ext. 2461

enavarro@info-ab.uclm.es

Patricio Letelier
Department of Information

Systems and Computation, UPV
Camino de Vera s/n

Valencia, Spain
+34 96 387 7007 ext. 73589

letelier@dsic.upv.es

Isidro Ramos
Department of Information

Systems and Computation, UPV
Camino de Vera s/n

Valencia, Spain
+ 34 96 387 7350

iramos@dsic.upv.es

ABSTRACT

The Goal-Oriented requirement engineering approach offers
important advantages for a deeper study of software requirements.
Some of them are supported for reasoning about design
alternatives and traceability between requirements and software
architecture. However, in complex systems, requirements
specifications suffer from crosscutting, which affects elaboration,
readability and maintainability of the specification, even when
using a Goal-Oriented approach. Separation of concerns, included
in Aspect-Oriented Requirement Engineering provides an elegant
and effective solution to cope with this problem. In this work we
present a model for requirement specification which integrates
Goal-Oriented and Aspect-Oriented approaches. This model is
included in ATRIUM, a methodology for concurrent definition of
requirements and software architecture. Using a UML profile we
give graphical notation to our model allowing its support in most
CASE tools based on UML.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements Specification –
Elicitation methods, Languages and Methodologies.

General Terms
Algorithms, Documentation, Design, Reliability, Standardization,
Languages, Verification.

Keywords
Aspect Oriented, Goal Oriented, Software Requirements,
Software Architecture.

1. INTRODUCTION
The requirements specification involves a number of challenges
related to quality characteristics that must be achieved, like those
described in IEEE 830-1998 [10] standard as: correct,

unambiguous, complete, consistent, ranked for importance and/or
stability, verifiable, modifiable, and traceable. The Goal-Oriented
approach [12] has aroused interest in researchers because of its
facilities for elaboration and deeper analysis of requirements
specification. In this approach, detailed requirements are obtained
by stepwise refinement starting from general system goals (or
concerns). This refinement continues until requirements are
assigned to system agents which are able to operationalize them.
Thus, the Goal-Oriented paradigm has two advantages that make
it especially suitable to guide the selection among several
architectural design alternatives:

− Its ability to specify and manage positive and negative
interactions between goals [6] allows the analyst to reason
about design alternatives.

− Its capability to trace low-level details back to high-level
concerns [7] is very appropriate to bridge the gap between
architectural models and requirements.

However, like in other approaches for requirements specification,
when dealing with complex and/or large systems, crosscutting of
elements usually appears in the specification. This crosscutting
manifests itself by affecting negatively readability and
maintainability of the specification. The Aspect-Oriented
Requirement Engineering (AORE) [20] identifies and manages
the crosscutting in an elegant and effective way, based on
separation of concerns.
ATRIUM [17] (Architecture generated from RequIrements
applying a Unified Methodology) is a methodology that
emphasizes the concurrent definition of requirements and
software architecture. In the ATRIUM context, the Goals Model
plays an essential role conducting the software architecture
generation and validation process. This Goals Model integrates
Goal-Oriented and Aspect-Oriented approaches, offering the
advantages of each of them.
On the other hand, one of the main concerns in any modern
modelling approach is to include a notation that allows a visual
representation of the produced specifications. UML seems to be
the appropriated candidate to be used as a language for software
modelling. Thanks to its extension mechanisms around the
concept of UML profile, UML can be extended and adjusted to
the particular needs of our Goals Model. Furthermore, most
CASE tools provide support for UML and allow us, in different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
5th Aspect-Oriented Modeling Workshop’04, October 11, 2004, Lisbon,
Portugal.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

levels, to work with these kinds of extensions based on UML
profiles.
In Requirements Engineering, there are some works defining
notations based on UML in the Goal-Oriented [9] approach as
well as in the Aspect-Oriented one [4]. However, none of them
integrates both perspectives in the way required by our Goal
Model.
The aim of this work is to present the Goal Model of ATRIUM
and the definition of a corresponding UML profile. This work is
structured as follow: next section is giving a brief review of
ATRIUM, its intention and activities. Section 3 shows how the
profile has been described for our proposal. Eventually, section 4
and 5 describe the related works and the reached conclusions.

2. ATRIUM: REQUIREMENTS AND
SOFTWARE ARCHITECTURES
ATRIUM is a methodology oriented to the concurrent definition
of Software Architecture (SA) and Requirements. In ATRIUM,
decisions at architectural level are made to satisfy specific
software requirements. With this aim, ATRIUM provides the
analyst with guidance, along an iterative process, from an initial
set of user/system needs until the instantiation of the architecture,
specified by means of PRISMA model [19]. PRISMA is an
architecture description language that allows us to define dynamic
architectures.

Goals
Model
Goals
Model

Define
Goals

Define
Goals

User/System NeedsUser/System Needs

Define
Scenarios

Define
Scenarios

Scenarios
Model

Scenarios
Model

Specify
Collaborations

Specify
Collaborations

Proto-
Architecture

Proto-
Architecture

Architectural
Styles

Architectural
Styles

Instanciated
PRISMA
Model

Instanciated
PRISMA
Model

CompilationCompilationGeneration
Patterns

Generation
Patterns

FormalizationFormalization Formal
Model

Formal
Model

Interaction
Patterns

Interaction
Patterns

Derivation
Rules

Derivation
Rules

ISO/IEC9126ISO/IEC9126

Figure 1 ATRIUM: activities and artefacts

ATRIUM entails five activities (Figure 1) to be iterated on in
order to define and refine the different artefacts and allow the
analyst to reason about partial views, both of requirements and of
architecture. The Define Goal activity allows one to identify the
different concerns of the software as well as the crosscutting
between them. The main idea is to determine which concerns are
candidate to be classified as aspects, in the PRISMA specification,
and realize them through aspects integrated into components
and/or connectors.
The Goals Model, one of the artefacts generated by applying
ATRIUM and previously presented at [16], was inspired by the
NFR Framework [6] and KAOS [7]. Goals, requirements,
contribution, etc, are also elements in its construction.
Nevertheless, the main difference, that this proposal exhibits, is
that only one model is introduced for functional and non-

functional requirements definition. It is due to both types of
requirements are highly relevant in the architectural definition.
Finally, our proposal introduces concepts from the Aspect
Oriented Software Development (AOSD [3]) approach. Terms as
weaving relationships, crosscutting, etc, have been brought in our
approach, as we already stated in a previous work [18]. In our
approach, the Goals Model allows us to identify and manage the
involved concerns, in such a way that every identified goal, along
the process, is considered initially as a concern.

2.1 Building blocks
The Goals Model provides a number of abstractions in terms of
which constraints on the software system have to be defined. A
key element introduced in its construction is a goal. It is defined
as an objective that the system-to-be should achieve [13], i.e., a
constraint or obligation that the system should meet. In its
definition it is characterized as Functional or Non-Functional,
according to the type of need or expectation it refers to:

− Functional goals or requirements describe services that the
software provides, i.e., the transformations the system
performs on the inputs.

− Non-Functional goals or requirements describe conditions or
constraints that the software must satisfy; they refer to how the
services are provided, for instance, in terms of performance,
adaptation, security, etc. We are highlighting them because
they are especially meaningful in terms of the architecture of
the end system.

Additionally, other characteristics have to be stated when a goal is
defined. For instance, each goal has to be classified according to
its priority, from very high to very low, for the system-to-be. This
classification helps the analyst to focus on the important issues.
These priorities can arise from several factors: organizational ones
when they are critical to the success of the development,
constraints on the development resources, etc.
Moreover, a set of preconditions and postconditions should be
identified. Preconditions establish which situations must hold
before some operation is performed. Postconditions define the
conditions that have to be satisfied after some operation is
performed. Their evaluations help us to determine the best design
alternatives among those that satisfy the postconditions for the
established goals. For their description a variant of dynamic logic
[14], which includes deontic operators for expressing permission
and obligation, is used but to go into more details on this topic is
out of the scope of this paper.
Similarly to goals, another used element in the Goals Model
construction is known as requirement. They also specify a need or
constraint on the end system, although its main difference
regarding goals is its capability to be assigned to and realized by a
set of agents. Additionally, also due to its capability it can be
verified at the end system. Its textual notation is similar to that
defined for goals. However, in this case, both postconditions and
preconditions should be defined for each requirement.
Aside from goals and requirements, another building block for the
Goals Model is the operationalization. When an analyst has
refined the initial set of goals, he/she must offer a set of solutions
that allow the system to achieve the established goals. An
operationalization is a solution that provides the target system
with architectural design choices which meet the users’ needs and

expectations. They are called operationalizations because they
describe the operation of the system, i.e., the system behaviour, to
meet functional and non-functional requirements.
It can be noticed that the alternative solutions to satisfy a given
requirement are not described on each operationalization. On the
contrary, it is in the Scenarios Model where these solutions are
expressed. However, operationalizations are introduced in the
Goals Model to conceptually represent each solution so that
relationships among the different alternatives can be established
within the Goals Model. Operationalizations establish a coupling
between the Scenarios Model and the Goals Model, establishing
the traceability between operationalizations and a specific view of
the Scenarios Model.
Additionally, we want to notice that operationalizations are not
functionally or non-functionally characterized like goals and
requirements. This is because the same solution can be associated
to different goals, both functional and non-functional.

2.2 Relationships for the Refinement Process
The stated building blocks, goals, requirements and
operationalizations, are inter-related by means of a set of
relationships. They are in charge of gluing the different elements
to complete the model and enhance its cohesion. Moreover, their
relevance is not only restricted to this gluing but also they allow
the analyst to introduce the rationale for the system design. The
decomposition of goals or how an operationalization positively or
negatively contributes to a goal can be defined via relationships.
They are applied via a stepwise refinement process which takes an
informal set of user/system needs, usually stated in natural
language, as well as the framework for an initial selection of
concerns provided by the ISO/IEC 9126 [11]. Both act as inputs
to begin with the model definition, and using some of the
proposals to identify goals [2]. In such a way, every refinement
step generates new goals/requirements and/or operationalizations
in the model. Therefore, the analyst has to deal with a reduced set
of building blocks at each step.
There are two types of refinements that can be applied: intentional
and operational. The former describes how a goal can be reduced
into a set of subgoals/requirements via AND/OR/XOR
relationships. The latter depicts how a set of solutions address a
requirement by means of AND OPERATIONALIZE / OR
OPERATIONALIZE / XOR OPERATIONALIZE relationships.
Both building blocks and relationships are structured as an acyclic
graph, where the refinement is achieved along the structure, from
the higher to the lower level, by applying intentional and
operational refinements.
Every goal, which is too coarse-grained, is refined in a set of
subgoals which are a decomposition of the original one. An AND
relationship between a goal GoalX and a set of sub-goals G1, …,
GN or requirements R1, …, RN is established if the whole set of
sub-goals and/or requirements has to be satisfied in order to
satisfy GoalX. An OR relationship is established if GoalX is
satisfied if at least a sub-goal or requirement is satisfied. Finally, a
XOR relationship is introduced if GoalX is satisfied when only a
sub-goal or a requirement from this set can be satisfied.
An operational refinement deals with requirements and
operationalizations. The alternative solutions for each goal are
established by means of this decomposition. There can be a large

number of valid operationalization methods that are applicable to
a requirement. In such a case, it is up to the analyst to examine the
impact of such methods on other requirements and decide on
what and how many operationalizing methods must be applied via
AND OPERATIONALIZE/ OR OPERATIONALIZE/ XOR
OPERATIONALIZE relationships. An AND OPERATIONALIZE
relationship relates the set of mandatory solutions for a
requirement. On the other hand, whenever several alternative
solutions can be provided for a requirement, the analyst can
introduce them in terms of the OR OPERATIONALIZE
relationship. Finally, whenever several alternative solutions can
be provided for a requirement, but only one can be selected for
the end system, the analyst can introduce them by using XOR
OPERATIONALIZE relationship. OPERATIONALIZE
relationships do not only relate operationalizations to
requirements but also to other solutions. It is used to refine the
operationalizations down to other simpler ones, i.e., to describe
how a solution can be expressed in terms of a set of simpler
solutions.
A set of symbols [++|+|#|-|--] are used to characterize the way an
operationalization contributes to achieve a requirement. Symbols
++ and + describe a strong positive and positive contribution, i.e.,
it provides a sufficient or partially sufficient solution,
respectively, to satisfy the related requirement. On the other hand,
symbols -- and - describe a strong negative or negative
contribution, i.e., the operationalization prevents or partially
prevents, respectively, the satisfaction of the related requirement.
The # symbol is introduced to specify operationalizations whose
impact (positive or negative) is neutral at the moment. This is the
default value.
The intentional refinement is iteratively applied to the set of goals
ending up when every sub-goal can be operationalized, i.e., when
a requirement can be defined. Similarly, the operational
refinement is iteratively applied to operationalizations until the
corresponding scenarios are simple enough.
Another type of relationship that can be introduced is conflict. It
can be set up among two goals/requirements if an incompatibility
appears between them, in other words, whenever the satisfaction
of a goal/requirement prevents the satisfaction of another
goal/requirement.
Finally, other relationship that can appear between
goals/requirements is called weaving. When a goal/requirement
crosscut other goals/requirements, a weaving relationship is
established. These relationships can be charecterized according to
some of the traditional AOSD weaving mechanisms, like before
and after. This allows us to express how a piece of
goal/requirement specification (from the aspect point of view) is
incorporated inside some other goal/requirement specification.
Other more specific weaving relationships could be used (like in
[19]), but we suggest to do this refinement in the specific domain
context of the system.

3. DEFINING A UML PROFILE
Along the process of definition of the ATRIUM profile, we were
faced with several challenges. One of them was related to the
satisfaction of the requirements [1] that Aldawud et al stated for
defining a UML profile for AOSD:
(1) The Profile shall enable specifying, visualizing, and

documenting the artifacts of software systems based on

Aspect-Orientation. This requirement has been satisfied by
means of the stereotypes and their visual representation as it is
described below.

(2) The Profile shall be supported by UML (avoid “Heavy-
weight” extension mechanisms), this allows a smooth
integrating of existing CASE tools that support UML. This
requirement is also satisfied due to our UML profile has been
defined according to the established construction rules in the
UML specification [22].

(3) The Profile shall support the modular representation of
crosscutting concern. The separation of concerns provided by
the goal oriented approach, along with the defined weaving
relationship, allows us to identify and manage crosscutting in
an early stage.

(4) The Profile shall not impose any behavioural implementation
for AOSD, however it shall provide a complete set of model
elements (or Stereotypes) that enable representing the
semantics of the system based on Aspect-Orientation. No
constraint has been defined about the implementation, only a
proper semantic related to the way we use the ATRIUM
elements at the requirements stage.

With the aim of describing this UML support for the ATRIUM
elements, two tasks have been carried out: the Metamodel
description of the Goals Model (section 3.1) and the UML profile
associtated to the metamodel (section 3.2 and 3.3).

3.1 Metamodel Description
The metamodel, shown in Figure 2, defines the abstract syntax for
specifying Goals Model in ATRIUM. We use the prefix “A-“
(from ATRIUM) to name metaclasses. One of the model elements
is AGoal which allow us to describe every concern of the Goals
Model, as we described above. AGoal has a meta-attribute called
type which describe the type of the goal, i.e., functional or non-
functional. By means of the generalization, ARequirement inherits
this meta-attribute, i.e., it can be also typed as functional and non-
functional.
Several relationships are described in the model. One of them is
AGoal/RequirementGroup which is used for representing the
refinement of a AGoal element into a set of goals/requirements.
As shown, the meta-attribute joinType is defined that allow us to
describe the type of refinement (AND, OR or XOR) by means of
the enumeration JoinType. In addition, AWeaving relation is
introduced with a meta-attribute called matchPoinType which
allow us to specify the way the weaving is applied. Its type is
MatchPointType that has been defined as an Enumeration.
Eventually, a conflict relationship is established to describe the
relation between conflicting goals/requirements. Every one of the
previous relationships is inherited by ARequirement, that is, they
can be used for it with the same meaning.
 AOperationalizationGroup allow us to represent how an element
ARequirement has associated a set of operationalizations, and the
way each element AOperationalization contributes to its
realization. The allowed contributions are described with the
enumeration ContributionType.

Figure 2 Metamodel of the Goals Model

3.2 UML Profile
This profile defines an extension to the reference UML 2.0
metamodel with the purpose of tailoring it to our Goals Model but
keeping its semantics. Metaclasses of the UML metamodel are
extended by means of a mechanism called extension that is
represented with an arrow with filled end, as can be observed in
Figure 3. For instance, AContribution is defined as a stereotype
which extends the UML metaclass Generalization. Additionally,
those specific features of the ATRIUM elements are defined by
means of meta-attributes (tagged-values in 1.5) of the stereotypes
to be described. That is the case of the meta-attribute joinType in
AContribution. In a similar way, each element, which appears in
the Goals Model Metamodel, is mapped to a stereotype and
avoiding “Heavy-weight” extension mechanisms, as can be
observed in the Figure 3.
Additionally, a set of well-formed rules, in the context of a
profile, are defined to introduce the specific needed semantic.
Several structural constraints can be easily extracted from the
Metamodel in Figure 2. For instance, a conflict can be described
among two Goals/Requirements, and similarly for the weaving
relationship. However, the more relevant rules are those related to
the domain semantic. These rules express constraints such as: a
ARequirement always has to be defined by refining one or more
AGoal.

AContribution

contributionType : ContributionType

AWeaving
matchPointType : MatchPointType

ContributionType

strongNegative
negative
unknown
positive
strongPositive

<<Enumeration>>
MatchPointType

before
after

<<Enumeration>>
JoinType

AND
OR
XOR

<<Enumeration>>

AOperationalization

ARequirement

AOperationalizationGroup
joinType : JoinType

1..*

1..*

1..*

1..*

1

1..*

1

1..*

GoalType
functional
non-functional

<<Enumeration>>

AGoal/RequiremenGroup

joinType : JoinType

AGoal
type : GoalType
priority : PriorityType
precondition : String
postcondition : String

0..*
1..*

0..*
1..*

refinements

10..* 10..*

refined

0..* 0..* 0..* 0..*

0..*

0..*

0..*

conflict
0..*

PriorityType

veryHigh
high
medium
low
veryLow

<<Enumeration>>

Figure 3 Goals Model Profile

3.3 Graphical Notation
This section outlines the graphic elements that may be shown in a
Goals Model. Along with the visual notation for every described
stereotype, a brief description is also provided. All of them are
described in Table 1.

Table 1 Graphics nodes included in Goals Models

Node Type Notation Description

AFuntionalGoal

Indicates a software
functional goal that the
system must satisfy

ANonFuntionalGoal

Indicates a software non-
functional goal that the
system must satisfy

AGoalGroup <<GoalGroup>><<GoalGroup>>

Indicates a refinement of
one goal in subgoals or
requirements

AFunctional-
Requirement

Indicates a functional goal
which is verifiable and
assignable to an agent

ANonFunctional-
Requirement

Indicates a non-functional
goal which is verifiable
and assignable to an agent

AOperationalization

Indicates a scenario
describing how agents
collaborate to support a
requirement

AOperationalization-
Group <<Operationalization

Group>>

Indicates a set of possible
operationalizations for a
requirement . Each
operationalization is
modeled as a
AContribution.

AContribution

Indicates how one
operationalization
contributes to one
requirement

AConflict <<Conflict>>

AWeaving <<weaving>>

Indicates a weaving
relationship between two
goals or requirements

4. AN EXAMPLE
This section illustrates how we have applied our proposal in the
context of the European Project Environmental Friendly and cost-
effective Technology for Coating Removal (EFTCoR) [8]. The
scenario of this project is the hull maintenance operations of
ships. Mainly, it addresses operations of coating removal, washing
and re-painting of hull of ships by using a family of robots, that

either perform different operations or the same operation but in a
different way. The identified robotic teleoperation platform is
integrated by the next subsystems:
(1) Monitoring System: encompasses the functionality concerning

to the informational and managerial needs related to ship
maintenance operation that is going to be accomplished.

(2) Vision System: allows the hull inspection of the working areas
and provides information for automatically moving the robotic
devices along the hull.

(3) Recycling System: retrieves the residues from the working
areas and recycles them.

(4) Robotic Devices Control Unit: interacts with the other robotic
devices with the aim of getting the needed information to
control the different devices (positioning systems and cleaning
tools) to be used in the maintenance tasks. It is accomplished
according to the commands introduced by the operator.

Our case study focuses on the Robotic Devices Control Unit. Its
architectural definition is highly relevant due to the fact that
several constraints have to be satisfied in order to allow a dynamic
behaviour of the system. This dynamism allows the EFTCoR to
replace, at run time, each cleaning tools and positioning devices.
Either change or operation has to be secure, providing a mean to
stop it if any damage can be produced to the equipment, the
environment or the operator. Moreover, every operation has to be
scheduled to accomplish hard deadlines.
The graph on Figure 4 shows (part of) the Goals Model where the
refinement of goals is reviewed. In this way, we observe how
Portability, Functionality and Efficiency are some of the selected
characteristics to become concerns for the EFTCoR system.
Furthermore, this figure shows us some of the relationships of
refinement that were established. For instance, the AND
relationship for the goals AdaptabilityWorkingEnvironment and
AdaptabilityHullMaintenaceOperation that was introduced to
satisfy Adaptability.
On the other hand, crosscutting also appears in the specification.
For instance the goals related to Efficiency and Adaptability. Both
goals are applied to other goals such as ControlPositioning or
ControlTools. Furthermore, conflict relationship can be described
in this model, when Security and Performance are demanded
goals for the system.

5. RELATED WORKS
Most works on profiles for AOSD has focused their efforts on the
design stage, such as [1, 21]. However, there are no many
proposals for the requirements stage. One of them was presented
by Araujo et al [4]. They have described an extension for UML
that provide support to a previous approach [15]. This one
establishes the way non-functional requirements constrain
functional requirements. In this way, functional requirements are
described as Uses Cases and non-functional requirements as
stereotyped Use Cases. The main problem, which this proposal
shows, arises from a metamodel in permanent evolution, i.e.,
whenever a new non-functional requirement has to be specified, a
new stereotype, with Use Case as base class, has to be defined
which is a heavier mechanism than our proposal.
More related to the Goals Model, and the way it is used for
eliciting requirements, is the proposal presented by Heaven and
Finkelstein [9]. They have defined a UML profile (based on UML

1.4) for the Goals Model of KAOS. Several stereotypes are
included that describe some common concepts with our proposal,
for instance, goals and AND/OR/XOR refinement relationship. In
this work, the metaclass Abstraction is used as base class for the
stereotype <<reduces>>. This stereotype represents a refinement
relationship between a goal and a subgoal. This alternative
presents an important drawback when attempting to establish a
characterization AND/OR/XOR for the whole refinement
hierarchy, instead of establishing it for each subgoal refinement.
In our approach, we use metaclass GeneralizationSet
(incorporated in UML 2.0) for this purpose. It allows us to
express the idea of hierarchy with the corresponding
characterizations. Additionally, they do not provide the analyst
with specific elements to describe the relation between functional
and non-functional goals, as we have stated above, that is, the
weaving relationship does not exist in their proposal.
Additionally, they also introduce operationalizations and an
associated model for its description. However, they do not use any
interaction diagram even though they are defining the system
behaviour. On the contrary, they define a set of new stereotypes to
describe concepts such as actions or events instead of using the
provided UML support by means of activity or sequence
diagrams.
Another difference regards to dynamic logic has been selected as
formalism instead of temporal logic that KAOS uses. This
election is due to our previous experience with industrial case
studies. The analyst comprehensibility and usability was greater
when dynamic logic was introduced than temporal logic.

Brito and Moreira [5] have also introduced a Goal Oriented
proposal, concretely, the NFR Framework [6]. Every identified
concern is specified by using the best approach. In its case study
Use Cases are used for functional requirements and SoftGoals
Interdependency Graph (SGI) for non-functional requirement.
Additionally, a template has to be fulfilled for every stated
concern, where both the contributions and the required concerns
are drawn. These provide information to detect the crosscutting
concern whose specification is accomplished by using a table.
This means that a diversity of notations is used in their approach.
SGI does not play an important role along the process, only as a
mean to describe non-functional requirements. This involves a
greater effort in order to have a full comprehension of the system
due to the specification is scattered over several artefacts.
The main advantage that our proposal offers is twofold. On one
hand, only one single model is introduced for the integrated
description of both functional and non-functional elements. On
the other hand, our UML profile does not have to be modified to
accommodate new non-functional requirements

6. CONCLUSIONS AND FUTURE WORKS
In this work we have presented the Goals Model included in
ATRIUM. This Goal Model offers a relevant improvement to
specification of requirements that takes the advantages of two
prominent and modern approaches: Goal-Oriented and Aspect-
Oriented Requirements Engineering. Furthermore, we have
defined a UML profile to facilitate the practical use of our
proposal in most current CASE tools. Using an example we have

Figure 4 Partial view of the Goals Model for EFTCoR

illustrated the application of the Goal Model and the
corresponding UML profile.
In our proposal the aspect concept does not explicitly appear as a
constructor, as other works do. Instead, the candidate aspects
implicitly arise on those goals/requirements with weaving
relationships. This is due to the concept of aspect is specified in
other models of the ATRIUM approach. For instance, when
shallow components and connectors are identified and specified in
the Scenarios Model, weaving relationships are taken into account
for defining possible aspects. We have to consider that both
architectural elements are defined by a gluing of aspects.
Several works are in progress related to the stated here and,
mainly, to ATRIUM. They are related to the definition of the
other involved models in ATRIUM and their corresponding UML
visualization. We foresight the common modelling framework of
UML will facilitate the management of traceability between
involved models.
Also, a deep inspection about the associated semantic of weaving
relationships remains as a current challenge. Until now, the
traditional ones have been defined but those introduced by Rashid
et al [20] can suggests new alternatives for our approach. In this
sense, we think the equilibrium between the readability/simplicity
of the specification and the versatility of the weaving relation
should be achieved.
Another key topic is related to identification of interaction
patterns for several crosscutting concerns in order to manage the
possible interference among them. In the developed case studies,
we observed that several concerns crosscut another one. The
associated semantic of this composition and how the tradeoffs
between them have to be faced must be solved in the next future.

7. ACKNOWLEDGMENTS
This work has been funded by the Spanish CICYT project
DYNAMICA TIC2003-07776-C02-02.

8. REFERENCES
[1] Aldawud, O. Elrad, T. and Bader, A. UML profile for Aspect

Oriented Software Development. In the Aspect-Oriented
UML Workshop, Collocated to the Aspect Oriented Software
Development Conference, (Boston, USA March 18, 2003).

[2] Anton, A. I. Goal-Based Requirements Analysis. In
Proceedings of the 2nd International Conference on
Requirements Engineering, (Colorado Springs, CO, April 15
- 18, 1996).

[3] Aspect Oriented Software Development, http://www.aosd.net
[4] Araújo, J., Moreira, A., Brito, I. and Rashid, A. Aspect-

Oriented Requirements with UML, In the Aspect-Oriented
UML Workshop. Collocated to the 5fth International
Conference on the UML, (Dresden, Germany, October 4,
2002).

[5] Brito, I. and Moreira, A. Integrating the NFR framework in a
RE model. In Early Aspects 2004: Aspect-Oriented
Requirements Engineering and Architecture Design
Workshop, collocated to the 3rd Aspect-Oriented Software
Development Conference, (Lancaster, UK, March 22, 2004).

[6] Chung, L., Nixon, B. A., Yu, E. and Mylopoulos, J., Non-
Functional Requirements in Software Engineering, Kluwer
Academic Publishing, 2000.

[7] Dardenne, A., van Lamsweerde, A. and Fickas, S. Goal-
directed Requirements Acquisition. In Science of Computer
Programming, 20, (1993), 3-50.

[8] EFTCOR: Environmental Friendly and cost-effective
Technology for Coating Removal. European Project within
the 5th Framework Program (GROWTH G3RD-CT-00794),
2003.

[9] Heaven, W. and Finkelstein, A. A UML Profile to Support
Requirements Engineering with KAOS, IEE Proceedings -
Software, 151, 1 (Feb. 2004), 10- 27.

[10] IEEE Std 830-1998. IEEE Recommended Practice for
Software Requirements Specifications, In Volume 4:
Resource and Technique Standards, The Institute of
Electrical and Electronics Engineers, Inc. IEEE Software
Engineering Standards Collection.

[11] ISO/IEC Standard 9126-1 Software Engineering- Product
Quality-Part1: Quality Model, ISO Copyright Office,
Geneva, June 2001

[12] Lamsweerde, A. van. From System Goals to Software
Architecture, In Formal Methods for Software Architecture,
LNCS 2804, Springer-Verlag, (2003), 25-43.

[13] Lamsweerde, A. van. Goal-Oriented Requirements
Engineering: A Guided Tour. In Proceedings of 5th IEEE
International Symposium Requirements Engineering,
(Toronto, Canada, August 27-31, 2001), 249-263

[14] Meyer, J.J-Ch. Approach to Deontic logic: Deontic Logic
viewed as Variant of Dynamic Logic. In Notre Dame Journal
of Formal Logic, 29 (1988), 109-136.

[15] Moreira, A., Araújo, J., Brito, I.. A Requirements Model for
Quality Attributes. In the Workshop on "Early Aspects:
Aspect-Oriented Requirements Engineering and Architecture
Design". Collocated to the 1st International Conference on
Aspect-Oriented Software Development, (Twente, Enschede,
Holland, April 22-26, 2002).

[16] Navarro, E., Ramos, I. and Pérez, J. Goals Model-Driving
Software Architecture, In Proceedings of the 2nd
International Conference on Software Engineering
Research, Management and Applications, (Los Angeles, CA,
USA, May 5-8, 2004), 205-212.

[17] Navarro, E., Ramos, I. and Pérez, J. Software Requirements
for Architectured Systems. In Proceedings of the 11th IEEE
International Conference Requirements Engineering,
(Monterey, CA, September 8-12, 2003), 365-366.

[18] Navarro, E. and Ramos, I. Requirements and Architecture: a
marriage for Quality Assurance. In Proceedings of the 8º
Jornadas de Ingeniería del Software y Bases de Datos.
(Alicante, Spain, November 12-14, 2003), 69-78.

[19] Pérez, J., Ramos, I., Jaén, J., Letelier, P., Navarro. E.
PRISMA: Towards Quality, Aspect Oriented and Dynamic
Software Architectures. In Proceedings of the 3rd IEEE
International Conference on Quality Software, (Dallas,
Texas, USA, November 6 - 7, 2003), 59-66.

[20] Rashid, A., Moreira, A., Araújo, J. Modularisation and
composition of aspectual requirements. In Proceedings of the
2nd International Conference on Aspect-Oriented Software
Development, (Boston, Massachusetts, USA, March 17 - 21,
2003), 11-20.

[21] Suzuki, J. and Yamamoto, Y. Extending UML with Aspects:

Aspect Support in the Design Phase. In the Aspect Oriented
Programming Workshop. Collocated to the 13th European
Conference on Object Oriented Programming (ECOOP'99)
Springer LNCS 1743, (Lisbon, Portugal, June, 1999).

[22] UML 2.0: Superstructure Specification, OMG Adopted
Specification. Ptc/ 03 August 2003.

